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Balancing Jets and EM particle resolutions

» For HZ production, all Z recoils matter
» ~70% of Z decay are hadronic
» Particle Flow Principle

» Optimal use of measurement information applied to each
reconstructed partiCIG CMS 19.7 fo" (8 TeV)

» Charged hadrons (~65%)
measured using track (~0.1%)
» Neutral hadron (~10%)
HCAL (~45%/WE) ~4.5%/E
» Photons/EM (~25%)
ECAL (~15%MNE) ~3.8%/E

Energy fraction
o O O
N 00 ©

O 0 0 O !
S

© o o
N oW A

©
—

eta

Z —Jets ~ 3.5 - 5.5% (Limited by HCAL & EM)




Electron should be done well at ee- Collider

» Muons
> — 7T T T T T T T T T T
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e’s worse than ps w/ CDR reference design

(needs Brem. Recovery, but that has EM res.)

Broadening due to brem~2-4%
3 *15%/ME > ~0.3-0.6% (compare to 0.1-0.3% for muons)
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EM Resolution and Photon Counting
» EM Resolution also improves angular measurements
and resolves Ny counting
» Recoil photons (~8% of full Vs collision rate)
» New Physics Searches and Neutrino Counting
400:_ ¢ Data L3 10? yZ (inv) L3

N. = }’Z — ee, Ul Improved Syst.
v I (A. Blondel)
— (SM)

W
o
o
|
zZ Z
< <
TR
w
I

Events / 4 GeV
S
[
o
>

100 —

00 50 200 0 20 140 10 180 200
Recoil Mass (GeV) Vs (GeV)

E. Bartos et al., “2y and 3y annihilation as calibration processes for high energy e+e- colliders,”

https://arxiv.org/abs/0801.1592



Three Regimes of EM Resolution

» For EM showers in a sampling calorimeter, the energy
resolution is dominated by the sampling fluctuations:

(O’E/E)EM”\/Ez(O’E/E) VE =27 d. '

samp
o4 | T ZEUS}?#/D é&\ J (100um - HGC)
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:Imaging Capabilities of High Granularity

Layer number

Pb 2.1 mm + SS 2x0.3 mm
+Cu0.1mm

107"

Average Energy density a.u.

Air 1.5 mm

CuUWldmm + Si0.3mm

One event
Fluctuations driven by
Low Sampling Fraction(~1/300)
High SF - is like average over many low SF showers

ww ¢

CuW1l4dmm + Si0.3mm

Layer number

Air 1.5 mm

Pb 2.1 mm +SS 2x0.3 mm
+ Cu0.1mm

Several thousand events



Segmented Crystal Calorimeter Module

For all MIPS

o Timing layer (2 layers): |
> LYSO:Ce crystals / 1 layer: 30 ps

SiPMs 2 layers: 20 ps + tracking

o 3x3x54 mms3 active cell
o 3x3 mm2 SiPMs

(15-25 um)

< 5%/sqrt(E) (+) 1%
« ECAL layer: ~30 ps timing achieved for e/y p>40GeV _

o PbWO crystals
front segment 5 cm (~5.4X,)

o rear segment for core shower
o (15 cm ~16.3X,)

<
-
<
—
E
<
-

\ VA WVAVA VA

10x10x200 mms of crystal —
5x5 mm? SiPMs (10-15 umiiitic - <——=¢Px

Front segment with SiPM in front and
rear segment with SiPM on back
7 - Avoids dead material at shower max
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Counts

Electron/n*

120 GeV electron

Timing: total energy
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Small Crystal Geometries for Timing Detectors

» Tiles and Bars (few mm thick w/ area of ~1cm?)
» Single layer ~330,000 channels
» Stereo readout for bars (L/R) ~25ps timing resolution

Non-wrapped crystal bar with 2 SiPMs attached at each end

-

3x3x50mm3 g " ) i I

-t

[| crystal

Option A for CMS MIP Timing Detector TDR incoming particles

Low occupancy timing layer timing for ~1 X0
Transverse orientation w/ stereo readout

| 1x1x40cm? |i

\ Photodetectors (eg. FPMT, SiPM...) /

~~

W 4

m Crystal Scintillator (eg. BGO, LYSO...) }

Similar study at IHEP
10 by Yuexin Wang




Crystal + SiPM timing layer (CMS MTD)

4

[| crystal [] siPm

incoming particles

Packaged array of 16 LYSO crystals

SiPM array before gluing to crystals en
Teflon wrapped
crystal bar with
2 SiPMs
attached at each
crystal end face




Silicon Photomultiplier (SiPM) Cells

» Typical dynamic range customization for SiPM

» More (small) SPADS to count more photons (50> 15um)

» Bright crystal (LYSO, GAGG) and high photodetection
efficiency (PDE) and light collection efficiency (LCE)

Currently:

Large device ~6x6mm?
CMS MTD ~4.5 m? of SiPMs
(of 3x3mm?)

Segmented Crystal ECAL.: I pro—
~200 m? of crystal surface L !
(3-4 layers)

Which SiPM device?

12



Energy Resolution and Dynamic Range

ly=light yield of crystal, Ice=light collection efficiency, pde= number of photoelectrons per photon,
phe==number of photoelectrons,

e 5%/sqrt(E) — LO>400 phe/GeV — LO>0.4 phe/MeV

o at LCE~2.5%, PDE ~ 20% — LY>80 ph/MeV

o Ok for PWO (~100 ph/MeV)
Maximum energy deposit in single crystal for 120 GeV e.m.
shower ~60%

o ~35000-70000 phe for ~72 GeV (at PDE~20-40% resp.)

e SiPM 5x5 mm2on a 10x10 mm? crystal is sufficient

o LCE~2.5%

o if cell size: 15 um — cells / SiPM ~110,000 and PDE up to 40%
o if cell size: 10 um — cells / SIPM ~250,000 and PDE up to 25%
e Sensitivity for 0.1 GeV particles

o 40 phe signal

> Noise from SiPM within 30 ns integration gate negligible

(DCR<10MHz — noise<1 phe)
13



Further Possibilities for SiPMs with
High Dynamic Range and Packing Density

» Large pixel count w/ large gain leads to current
output limitations for large area devices

» Multiple analog outputs per device
» Regional lumped analog sums - split output currents per
region and sum (1/128, 1/32,1/8,1/2)

» Multi-gain SPADs (5, 15, 50um) for different cell sizes and
fill factors — dynamic range built into SPAD layout

» On-chip ADC with regional serializers
» Commercial market for LIDAR advances is growing rapidly
— many new developments expected

14



Conclusions

e Physics case at e*e colliders calls for high resolution ECAL
» Z Jet resolution not limited by EM resolution

» Z->e*e recoil resolution w/ Brem. recovery methods
» Sampling fraction statistics for PFA shower separation

» Photon counting with high fidelity/angular resolution

e Homogenous and segmented crystal calorimeters can provide
outstanding energy resolution in the energy range 0.1-120 GeV

e Calorimeter design can capitalize the expertise from previous
HEP detectors (CMS / PANDA ECALS)

e Recent progress in the fields of crystals and SiPMs enables a
flexible, compact and lower cost solution for a high resolution
ECAL

e A highly segmented calorimeter in transverse and longitudinal
direction combined with 20 ps timing capabilities enables novel
4D algorithms for PFA

15
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Comparisons with CMS and PANDA ECALs

. LY (PWO) ~ 100 ph/MeV

« CMS EE:
o QEypt~22%,
o LCE ~9% (1 VPT: size~ 11 mm radius - area: 380 mm?)
o PbWO, crystal end face size: ~30x30 mm?
« CMS EB:
o QEapp~75%,
o LCE~9% (2xAPDs, size: 5x5 mm?)
o PbWO crystal size: ~22x22 mm?

o Resolution measured in test beam: ~3-6% stochastic
+ 0.3-0.6% constant

http://iopscience.iop.org/article/10.1088/1748-0221/2/04/P04004/pdf

https://arxiv.org/pdf/1306.2016.pdf
PANDA ECAL

PWO-Il development:
— factor 4 higher LO at -25°C wrt to +25°C
— ~20 phe/MeV @PDE=20%

— <2% stochastic term
17 https://arxiv.org/pdf/0810.1216.pdf



http://iopscience.iop.org/article/10.1088/1748-0221/2/04/P04004/pdf
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